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There is a simple analogy between plane problems of nonlinear filtration and problems 
of.longitudinal shear of nonlinearly elastic and plastic solids which makes it possible to 
transfer results and problem formulations from one field to the other. We formulate this 
analogy in explicit form (Sect. 1). consider some examples and consequencies (Sect. ‘2), 
and justify a variational principle for the equations of nonlinear filtration, whit\ together 
with the maximum principle yield estimates for the integral characteristics of a filtra- 
tion stream {Sect. 3), 

1, 1”. The system of equations of plane nonlinear filtration of an ~comp~ssible fluid 
consists of the filtration law equations and the continuity equation fl. a] 

gradW = - Q, (w) w / w, div w = 0 (1.1) 
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where w is the filtration velocity and H is the pressure head. In the plane problem w 
and grad H are two-dimensional vectors lying in the plane x, g. 

Now let us consider a cylindrical plastic solid whose generatrix is parallel to the z - 
axis and assume that every straight line parallel to the generatrix is displaced along 

itself as a rigid rod. The body is in a state of longitudinal shear (antiplanar straining), 
the stresses acting in the body are reducible to the two shearing stresses zXz and 7rr. and 

(e. g. see [33 > grad f = y = f (r) z / -c, div T = 0 (1.2) 

Here P = 5 (x, Y) is the displacement along the = -axis and y is the shear strain vec- 

tor (aT; / dx, a< I ag), and T is the shearing stress vector (zXz, TV*). In order to pass from a 
solid to a non~nearly viscous fluid we must replace the ~orres~nd~g displacements by 

velocities and the strains by straining rates. Equations (1.2) then describe “Couette” 

motions, i.e. rectilinear parallel motions of the fluid in the absence of a longitudinal 

pressure gradient. 

The functions @ (w) and P‘ (0) occurring in Eqs. (1,I) and (1.2) describe the filtration 
law and the straining or flow law, respectively. 

Now let us replace the vectors y and t by the vectors y* and T* which are of the same 
magnitude but rotated by an angle ‘1% n. We have 

% a: 
&*=-~ry-.--ay.’ ~l/*=y.&--, z,*=-+j, zy *=zx (1.3) 

We therefore obtain 
div y * = 0, rot z* = 0 it.,,) 

so that we can consider r* as the gradient of the stress function X, 

z* = grads = s (y*) y* i y*, div y* = 0 (i-5) 

Since the vectors ‘5 , T* and y , y* are of equal magnitude and since the vectors Y* 
and li* coincide in direction, the function S (y*) is the inverse of the function lT (T). 

Comparison of systems (1.1). (I, 2) and (1.5) yields two systems of analogies between 

filtration problems and problems of rectilinear parallel motions. In the first of these 
analogies the filtration velocity vector corresponds to the stress vector 2, the pressure 

head gradient taken with the opposite sign to the strain vector y, the pressure head Hwith 

the opposite sign to the longitudinal displacement 5, and the stream function 9 to the 
stress function X; finally, the function CI, (w) corresponds to the function r (.t) , 

wzr, -*Htj, --gradHty, *2x, @=I’ (l:r,j 

In the second system of analogies the correspondences are 

wz?y*,-B~=, -gradN$r*, qc’j, @tc’S (I.it 

2". Let us establish the correspondences of the singular points and boundary conditions 

for the solutions of the corresponding problems. In the typical formulation of the prob- 
lem in filtration theory the boundary C of the domain 11 in which we seek the solution 
can consist of segments C, where the pressure head II assumes a specified value, and 

segments c, on which the normal component wnof the filtration velocity (or, which is 
the same thing, the derivative Jl) / & of the stream function along the boundary) has 
been specified. Finally, the domain D can contain singular points Mf(sources and sinks) 

in traversing which the stream function experiences a finite increment qf and near which 
the filtration velocity has singularities of the form gi / 12~~ (M, &f&l, where p (M, Mi) 
is the distance between the point Mi and the present point A?. 

In the first system of anaiogies the displacement j ii: the plasticity theory problem is 
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specified on the segment C, of the boundary, and the stresses ‘t;, normal to the boundary 
(or the derivative of the stress function x along the boundary) are specified on the seg- 
ment C,. Finally, the sources and sinks correspond to the concentrated forces qi, so that 
the stresses near the points Mi have a singularity of the form hi / [2rcp (M, M,)]. 

In the second system of analogies the values of the stress function x (and therefore 
the component of the “additional” stress t* along the boundary or the component of the 
stress ‘c normal to the boundary) is specified on the segment CH of the boundary. The 

values of the displacement (or the component of the strain y along the boundary) is spe- 
cified on the segment cu,. In traversing the singular point Mi the displacement 5 increa- 

ses by the amount qi. This means that the points Mi must be considered as screw dislo- 

cations with the Burgers vector directed along the generatirix and equal to qia Finally, 

the concentrated forces Pi correspond to the point vortices (* ) of intensity Pi. 

It is clear also that we have a duality of the solutions of nonlinear elasticity (plasti- 

city) problems in pure shear. Specifically, each solution ‘t = v (5, y), y = y (5, y), 

5 = 5 (1, Y) of system (1.2) corresponds to a solution y* = T (I, y), z* = v (5, y), 

x = 5 (r, y) provided the function S for the second system coincides with the function 
I’ for the first. 

2, Let us illustrate the above by some examples. 19 Sokolovskii [43 pointed out a 
special case of a nonlinear filtration law for which the mapping of the plane of variables 

9, H onto the plane of the ancillary variables h, 0 is conformal. We can express this 
law in our notation as 

Q (IS) = 20 [1 - (w / Q-‘iz (2.i) 
Here 6 is the angle between the velocity w and the r-axis ; h is determined by the 

relation i?h 
C ,nh _+. c” / kti’*z = w Wf 

Neuber [5] obtained a similar result for the problem of longitudinal shear of a non- 
linearly elastic solid. 

2O. Making use of the hodograph transformation (i. e. taking the stress z and the angle 
tJ which it forms with the z-axis as the independent variables), Neuber [6] obtained solu- 

tions with a singularity for bodies with a wedge-shaped cutout. His equation for the 
stress function x is of the form 

z” a I’“@) “II -- i-_-)+$&o P(z) az \ZP (Z) dz 12.3) 

Let US attempt to find the stress dis~ibution over the exterior of the semi-infinite 
Cutout. We can then find a singular solution (i. e. a nontrivial solution for which the 
stresses at the banks of the cutout are equal to zero) for any form of the function I’ (T) 
The required solution is defined to within a constant factor and is of the form 

x = A sin 6 [I (@j-l (2.4) 

Making use of the formulas for converting back to the physical plane, we obtain the 
stress distribution pattern near the cutout. 

l ) By a “point vortex” we mean a singularity of the filtration velocity field of the same 
type as a velocity s~gulari~ near a hydrodynamic vortex, Flows with vortices do not 
arise in filtration theory problems and therefore constitute a theoretical idealization, 
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Applying the above analogies, we immediately obtain the solutions of two other prob- 
lems. The substitutions z -+ y*, x -+ 5, r -+ s yield a particular solution of the prob- 
lem of the displacement distribution near the edge of a rigidly fastened plane in a solid 
(“a rigid plate welded into a solid”). 

5 = A l S (?*)I-l sin 9 (2.5) 

Here t) is the angle between the vector y* and the s-axis. 
Finally, the substitutions z -+ W. x -+ I$, I -+ cy> give us an equation for determining 

the stream function I$ in the hodograph plane W, 0 of the filtration velocity, 

(2.6) 

(which clearly coincides with Eq. (1.5) of p]). Neuber’s solution gives us the function 

111 (r+ 8) for the problem of flow of a filtration stream past a semifinite plate (see 171). 

$ = A [@ (w)j-1 sin 9 (2.7) 

The gas dynamic problem of the flow past a plate was solved by Ringleb [S] (see also 
[9]). The existence of a solution of the form (2.4) for an arbitrary law F (TJ is an imme- 
diate consequence of Ringleb’s findings. 

Finally, Neuber’s solutions for wedge-shaped domains can be used directly to describe 
the behavior of the solution at the corner points of a filtration zone for a power filtration 
law, 

3”. The hodograph ~ansformation can also be applied to problems with a more com- 

plex geometry. Papers PO-L?] contain formulations of some such problems as well as 
specific solutions for the case of filtration with a limiting gradient when the function 

Q, (w) is of the form a, (W, = l/J + ?b (w > W, 9 $ Q, (W) < k (ui = 0) $8, 

It is clear that all these problems can be interpreted simply as problems of longitudi- 

nal shear of a rigidly plastic body with strengthening for whfch the stress-strain relation- 

ship is of the form s o,) ;- 1, + k (,, > ,,J, 0 d s (v) d h (v = 0) (-‘.I)) 

Here the sources correspond to helical dislocations of the corresponding magnitude, 
the stagnation zones to rigid cores, and the flux lines to lines of constant displacements 
5. Specifically, the soktion obtained in [ll] defines the field of a helical dislocation 
with the Burgers vector 4 centrally located in a layer whose surfaces are displaced by 

the distance q / 2 relative to each other. 
Similarly, the particular solution of problems of filtration with a limiting gradient 

obtained in fl] can be interpreted as solutions of problems on the straining of wedge- 
shaped solids with a fixed edge and a stress-strain relation of the form (1.9) and also of 

problems on the longitudinal flow of viscoplastic (Bingham) fluids in wedge-shaped 

domains. 
When the exact solution of the problem with complex geometry turns out to be unob- 

tainable, it may be expedient to apply the hodograph method and then to solve the prob- 
lem approximately in the hodograph plane. 

For example, let us consider the straining of a layer (Fig. 1) of viscoplastic material 
with linear strengthening (relation (2.9)) when a concentrated force of magnitude P per 
unit length along the z -axis is applied to the middle surface of the layer (perpendicu- 
larly to the plane of the Fig. 1) (“Drawing of a rigid filament out of a layer”) ; the side 
surfaces of the layer are rigidly fastened. The filtration analog of this problem is that 
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of flow with a limiting gradient produced by a point vortex of intensity P lying midway 
between two impermeable straight lines. Such flow involves a stagnation zone which cor- 

responds to the rigid domain (the shaded area in Fig. 1) in the plastic material. The 

Fig. 1 Fig. 2 

mapping of the element OABC of the deformed domain into the hodograph plane y, 6 
is shown in Fig. 2, and 

5 = 0 along ABC,ag/i33 = 0 along OA,OC (2.10) 

In addition, for y -+ CO the solution has a singularity corresponding to a concentrated 
force, i.e. as we can easily show 5 = (P , 2 n) ln y (2.11) 

The equation for the displacements I, for a body conforming to relation (2.9) becomes 
the equation 

r (r + A) G + (r - A) ar 
!.L+Z.L_, (2.12, 

An approximate solution of mixed problem (2.10)-(2.12) which arises in the hodo- 
graph plane is easy to obtain if the quantity a. i.e. the strain at the point A of the 
boundary lying directly under the applied force, is large compared with the characteris- 

tic strain h, a>h. To obtain the solution in the first approximation we need merely 

use the analogy with the filtration theory problem and the results of p2]. replacing the 

distribution of 5 over the segment OA (Fig. 2) by the distribution corresponding to the 
zero value of h. For h = 0 we obtain 

(2.13) 

Along the line y = a we have 

5s = & He ln (eie + (erie - I)“‘) (2.14) 

In the rectangle 0 < y < a, 0 < 8 < 1/Z n the solution of Eq. (2.12) satisfying the 
boundary conditions at the sides 6 = 0, 6 = I/% n, y = 0 is of the form 

ca 

5 = Y’ 2 BmF (2m + i, - 2m + 3, 3, - r / h) sin (2m - 1) 0 (2.15) 
m=l 

(F is a hypergeometric function). 

To obtain the first approximation we need merely determine the coefficients 5, from 
the condition 

This yields 
5 La = 50 I,_, (2.16) 

m c- 2 F (2m + 1, 3 - 2m, 3, - r 1 ?J mF(2m+i, 3--m, 3, -a/h) sin (2m _ 2) 0 (2.171 
m=1 



158 V. hf. Entov 

‘l?X 

fm=$ s 50 (a, 0) sin (2m -- 1) 0 tltt (2. IN 
0 

To determine the boundary of the rigid domain in the first approximation we simply 

compute the first term of expression (2.17) to obtain 

(2.19) 

Within the error bracket of the approximation the coordinates of the boundary of the 

rigid domain are given by the expression 

P a-+-h 
S$iY===E @’ - [sin’ 8 + i0 - i r/3 sin 20 j (2.20) 

The difference y (1/2rc) - y (0) = h and (2.20) gives us 

;i?&-+j, @&fi-~j ja.21) 

We note that the boundary of the rigid domain tends to some limiting curve as h / a -a 0 
Its position is completely defined if we also specify the distance of one of its points from 

the y -axis. We have 
n a* 

$13 ~- SA =I 
Cl 

C&r 

6 
\ae fj4J wz ! - 

Substituting expression (2.17) into this equation, we obtain 

& -jj f 3m-1 
XB -x4=y. 

F (2m, Zn-2, 2, --of m 
m (2m - 2) F (3 - 3m, I+ 2m, 3, 

3,. 
- rnz2 a0) 

+ ha:j~ (I -j- a01 In (1 + a0j, ao---a/A (2.Z) 

We can show that the order of the sum of the series as a0 -+ w is lower than the order 

of the isolated term. This allows us to write 

h’a P 8 P 
XB--5 A- -’ L~In(~+uO)=-;i-hin~ n’ 

3, I.“. The analogy between plasticity and filtration problems enables us to carry 
over the familiar variational principles of the deformational theory of plasticity (non- 
linear elasticity) directly into filtration theory. The following statements are valid in 

the theory of plasticity of ~compressible solids 131. First, 

A= 3’lTdV 
s 
V 

(3.1) 

Here A is the work performed by the external forces acting on the body over the sta- 

tically corresponding displacements ; T and r are the intensities of the stress and strain 
tensor deviators. Next, under fixed external loads 

(the principle of minimum total system energy); here 

sn = 2x1- (3.3) 

is the variation of the strain potential II; the total energy is defined as 
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3= 
s 

l-Id -A (34 

Finally, we have the principle of minimum additional work R under fixed external 
loads, T 

6 RdV=Q, 
s 

R= r(P)dT 
s (3.5) 
0 

In longitudinal shear 
&II = tsy, 6R = yfh (3.6) 

Now let us consider plane filtration motion in a source-free domain D bounded by 
the contour C . By the second system of analogies (Sect, 1) expression (3.1) gives us 

But 

(3.7) 

and since the increment [H$Jc associated with traversal of the contour C is equal to 

zero, it follows that 

$(gradH),$ds=-$HHdds= #Hw&s (3.3) 

and, by (3.7). 
0 c 

- 
# 

Hounds = - 
s 

grad HwdS (3.9) 
c D 

The left side of this equation represents the work performed by the external forces on 
the fluid entering the filtration domain per unit time ; the right side is the power dissi- 
pation in the filtration domain. Thus, (3.9) is the total dissipation identity : all of the 

work of the external forces is dissipated in the filtration domain. 

Introducing the dissipation potential for the filtration motion 
W 

D= D(o)dur 
s 

(3.10) 

IJ 

by analogy with the plastic potential II, we obtain (by analogy with (3.2) ) the varia- 

tional equation 
~~~~d~~~~~~d~)=O (3.22) 

c 
where the variation is carried out for constant values of the pressure head H along the 
contour C H ; the permissible velocity fields w are defined as those fields which satisfy 
the continuity condition div w = 0 (3.121 

Specifically, for (6w,)c = 0 we have 

s(S DC+=0 (3.13) 

D 

i.e. the true velocity field differs from all other velocity fields satisfying the continuity 
equation and having the same values of the normal component of the velocity at the 

domain contour in that it minimizes the total dissipation potential, 

l?*=\ DC&s (3.14) 

3 



Finally, by analogy with (3.5) we find that the true pressure head distribution differs 

from all the other distributions which assume the same values at the boundary in that it 
minimizes the total additional dissipation potential, 

Z 

R* = \ RdS, R := s Y (7) dq, Z-i/gradHI 

i, Q 

(3.15) 

where the function ?I-’ is the inverse of a. 
2’. A few remarks concerning the above variational principles are in order, 
In the first place, these principles can be proved directly without reference to plasticity 

and not only for plane, but also for three4mensional filtration motiorrs, It is easy to 
show that the true motion corresponds to the minimum of the corresponding functional 

not only with respect to infinitely small distances, but also with respect to all permissible 
states, This implies the uniqueness of the filtration motion in a finite domain ;the values 
of Wn are specified over part of the boundary of this domain, and the values of H are 

specified over the other part. All of the proofs can be carried out as in Prager’s paper 

1131, This involves the use of the familiar Young inequality 1141 
(I 

a 1: ,< _ S f (x) dx ,-t- \ cp (zj da (X16)< 
0 (; 

where and cp are mutually reciprocal functions. The proofs remain valid for motions 

with a limiting gradient involving the formation of stagnation zones. 
FinaXXy, variational principle (3, I.l> can be used to derive the filtration law equations 

and boundary conditions in the usuaX way, 
If the medium is inhomogeneous, then the fiBration law at each point can be written as 

grad H = -0 (w, h) 5, 
grad N 

w 1 - ‘I’ ( 1 grad H t Y iA) / grad N 1 (3. 17) 

where h = h (5, Y, z) is the parameter of relative resistance of the medium Oh’> 0, 

Yrp[ < 0. It is easy to see that all of the above variational principles remain valid for an 

inhomogeneous medium. 

3”, Let us consider the filtration domain ABCD bounded by the two streamlines A3 

and DC and by the equal pressure head lines AD 

and BC [Fig. 3). 
bet us suppose that the filtration law CD (w, h.) 

is of the form Q +, I~,) = h& (3.18) 

We then infer from f3.9) that 

(HI - H,) Q = \ hz~“‘~ds (3.18) 
‘R 

where Q is the total discharge rate of the filtra- 
tion stream. 

Fig. 3 Now let us consider a different field of filtra- 

tion resistances h* 2 h and the field of veioci- 
ties w* associated with it for the previous values of the pressure head at the boundaries 
dfi and .63C . Since the field IO* is permissible for the initial domain, we infer from@,ll) 



Equations of plane filtration and equations of longitudinal shear of 161 
elastic and plastic solids 

d s D hJ+, h*) ds - Q* (H1 - HL) 

D 

From (3.10) and (3.18) we obtain the expression D = hwkfl / (k + i), so that 

5 D (w, h) dS = 
D 

We therefore infer from (3.2 0) that 
Q*<Q (3.22) 

This result is physically self-evident; it means that as the filtration resistance in some 

part of the filtration domain increases, the discharge rate for the same pressure head 
decreases. 

This makes it possible to obtain estimates for the discharge rate of a filtration stream 

by replacing it by a flow with a simpler geometry. Thus, if the direction of the stream- 
lines is specified arbitrarily (which is equivalent to breaking up the stream into stream 

tubes by means of impermeable partitions), then the discharge rate for a given pressure 

distribution at the boundaries 07 the domain can only diminish. If we are dealing with 
motion in a layer of constant thickness, r:ien by placing sufficiently closely spaced psr- 

titions parallel to the ceiling and floor of the layer we obtain the scheme of a maximally 
anisotropic layer of zero permeability across the bedding. The motion of a fluid in such 
a layer proceeds along sublayers without exchange of fluid between the latter. By virtue 
of what we said above, such flow is not characterized by a flow rate higher than that of 
the initial flow. Introduction of segments of zero resistance can only increase the dis- 

charge rate. 
Charnyi (see n5]) made extensive use of such devices in the case of filtration accord- 

ing to the Darcy law (k = 1) . Specifically, if impermeable boundaries are “impressed” 
into the filtration zone, then the discharge rate decreases ; on the other hand, the “im- 

pression” of constant pressure head lines increases the discharge rate. In essence, these 

statements are close to those used in estimating the limiting loads for rigidly plastic 

solids (see [3] ), which corresponds to the limiting case k = 0 in (3.18). 
4’. Somewhat weaker statements can be made about an arbitrary filtration law 

described by an incresing function @ (w). It is easy to show that the maximum principle 

is valid for the pressure head H and for the stream function 9 , so that these functions 

cannot assume maximum and minimum values inside the domain of motion or on those 
boundaries where their normal derivatives are equal to zero (a streamline for the pressure 
head H and a constant pressure head line for the strearh function q). Now let us consider 
thedomain D' obtainable from the domain D by “impression” of the streamline DC 

(the broken curve in Fig. 3). Let the discharge rate Q be the same in the two cases. We 
can now make the following statement: 

the inequality 

is fulfilled at all points of the domain D’ , so that 

w’ > w (3.24) 

at all points of the boundary AB ; the pressure head drop does not decrease at these 

points. H'>H (3.25) 

w’ < w 
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along the “undeformed” portions of the streamline. 
(The author of PS] proved such statements for Darcy filtration and used them to obtain 

discharge rate estimates for filtration in domains with a complex geometry.) In fact, let 
q’>$ at some point M ED’. 

Then there exists a subdomain D* C D, M E D* bounded by the line I’ inside which 
I#’ > II, ($’ = Q at I’ ). The line 1 cannot be a closed curve enclosing L)* , since this 

would mean that $ = $’ in D* by virtue of its uniqueness. For the same reason D* can- 
not be contiguous with one equal pressure head line only. The subdomain D* must there- 

fore be a strip connecting equal pressure head lines (Fig. 3). Along the upper boundary 
I’+ of this half-strip we have 8~ 

as =; -- @ (w) -$ = _ o ‘I ;Ya;d$I ) 2$ 

Moreover, the solutions II, and q’satisfy the following expressions by hypothesis : 

Hence, 

This means that 

A+~~)“l” 

P, - Hz)’ < HI - H, 

On the other hand, at the boundary I’_ 

so that 

We see from that that (H, - Hz)’ > HI - H, and -$’ = $ in D* by virtue of uni- 
queness. This contradicts our hypothesis, so that $’ < II, everywhere in D’ The follow- 

ing relations are therefore fulfilled on ,4B : 

This implies statements (3. d4), (3.25). Statement (3.26) can be proved in similar 
fashion. Inequality (3.23) also implies that all the streamlines either remain stationary 
or experience impression towards a stationary streamline. Finally, we note that all of 

our results remain valid for a strip between two infinitely long streamlines. 
It is easy to see that if the “impressed” segment of a streamline lies inside a stagna- 

tion zone 9 = const for the initial flow, then the equality sign applies in all preceding 
estimates. 

A similar argument shows that “impression” of one of the equal pressure head lines 

into the domain of motion cannot reduce the discharge rate, nor can it reduce the filtra- 
tion velocity at any point of the unaltered equal pressure head line. 

The above statements, which are physically self-evident, enable us to construct esti- 
mates of solutions in cases where an exact solution is difficult to obtain. 

5”. An important qualitative consequence of our results is the fact that in the case 
of filtration flows bounded by two streamlines (flow in a finite or infinite strip of pos- 
sibly varying width) “impression” of one of the streamlines into the domain can only 

reduce the size of the stagnation zones adjacent to the other streamline. Specifically, 
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if there were no such stagnation zones in the first place, then “impression” cannot pro- 
duce them. 

Example. A stagnation zone arising near a wall during flow from a source of inten- 
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sity CJ lying at the distance L from a wall is larger than 

the stagnation zone produced by the same source lying 

between two walls (Fig.4). Since the second problem has 

an exact solution [11], this gives us the lower estimate 

for the stagnation zone in the first problem. 

6”. All of our statements are also valid for the longi- 
tudinal shear of plastic solids by virtue of the analogies 

noted in Sect. 1. In particular, let longitudinal shear be 

produced by the extraction of a rigid rod of arbitrary cross 
section from a rigidly plastic solid. Let r be the radius 
of a circle entirely surrounded by the rod contour and let 

R be the radius of a circle entirely surrounding the rod 

cross section. The external rigid zone is then contained 
in the rigid domain for a circular rod of radius r and 
contains the rigid domain for a rod of radius R (this is, 

of course, a self-evident conclusion). 

As our next example let us consider the motion pro- 
duced in a viscoplastic fluid by a half-plane perpendicu- 
lar to the fixed wall and moving at the velocity II along 

its rib (Fig. 5), By Sect. 1, the motion in question is an 
analog of the flow of a filtration stream with the discharge 
rate U past a wall. It is clear that the flow must tend to 

radial flow at infinity. This means that the stagnation 

zones do not arise in the flow (it is quite a simple matter 

to show that the stagnation zone boundary would have to be concave towards the flow 

domain, so that the stagnation zone cannot be constructed without violating the condi- 

tions at infinity). What we showed in Sect. 5 now implies that stagnation zones cannot 
arise in flow along the wall of any cylindrical body containing a half-plane s > L . 

It is interesting to note that Oldroyd 11’71 constructed an example of an exact solution 
in which a stagnation zone extending out to infinity arises during the motion of a body 
of a certain special shape through Bingham fluid. 

The above discussion indicates that a solution without a stagnation zone must exist 
in addition to Oldroyd’s solution. The possibility of two solutions (or, in fact, of an infi- 
nite number of solutions) is based on the fact that in formulating a problem for an infi- 

nite domain one must specify conditions at infinity. The character of the degeneration 

of filtration equations with a limiting gradient(and of the analogous equations of longi- 
tudinal shear of viscoplastic or rigidly plastic solids) for w = 0 is such that boundary 
conditions must be specified at the line of degeneracy which is, in addition, infinitely 

far away. This is easy to see by considering problems which admit of mapping onto a 
hodograph plane. In this lies the fundamental difference between the problems under 

consideration and problems of linear filtration in which it is enough to require the bound- 
edness of functions at the points of degeneracy. 

The author is grateful to G, I. Barenblatt for his valuable comments. 
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